摘要:21世纪教育网小学频道为学生整理了“小学数学思维训练”,希望能对广大考生和家长有所帮助,具体如下: 无限循环小数是有理数,既然是有理数就可以化成分数。 循环小数分为混循环小数、纯循环小数两大类。 混循环小数可以*10^n(n为小数点后非循环位数),所以循环小数化为分数都可以最终通过纯循环小数来转化。 方法1.无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。 例如:0.333333…… 循环节为3 则0.3=3*10^(-1)+3*10^(-2)+……+3^10(-n)+…… 前n项和为:30.1(1-(0.1)^(n))/(1-0.1) 当n趋向无穷时(0.1)^(n)=0 因此0.3333……=0.3/0.9=1/3 注意:m^n的意义为m的n次方。 方法2:设0.3333……,三的循环为x, 10x=3.3333…… 10x-x=3.3333……-0.3333…… (注意:循环节被抵消了) 9x=3 3x=1 x=1/3 第二种:如,将3.305030503050……(3050为循环节)化为分数。 解:设:这个数的小数部分为a,这个小数表示成3+a 10000a-a=3050 9999a=3050 a=3050/9999 算到这里后,能约分就约分,这样就能表示循环部分了。再把整数部分乘分母加进去就是 (3×9999+3050)/9999 =33047/9999 还有混循环小数转分数 如0.1555…… 循环节有一位,分母写个9,非循环节有一位,在9后添个0 分子为非循环节+循环节(连接)-非循环节+15-1=14 14/90 约分后为7/45 相关推荐》》》小学数学思维训练帮助汇总
Tags:小学,思维,训练,循环小数,分数 |
21世纪教育网,面向全国的中小学学教师、家长交流平台