向小君
地区: 湖南省 - 湘 西 - 龙山县 学校:龙山县红岩溪镇初级中学 共1课时14.1 整式的乘法 初中数学 人教2011课标版 1教学目标知识与技能 1、探索多项式与多项式相乘的乘法法则。 2. 能灵活地进行整式的乘法运算。 过程与方法 1、经历探索多项式与多项式相乘的乘法法则的过程,体会乘法分配律的作用以及“整体”和“转化”的数学思想; 2、通过对乘法法则的探索,归纳与描述,发展有条理思考的能力和语言表达能力; 情感、态度与价值观 1、体验学习和把握数学问题的方法,树立学好数学的信心,培养学习数学的兴趣。 2学情分析我所教班级学生成绩参差不齐,优等生占百分之五,中等生占百分之五十,后进生占百分之四十五。班内人数不多,我们教师在辅导学生,检查作业时,力求照顾周全,逐一过关,努力让每一个学生的作业精益求精。在课堂教学时,想尽各种办法,努力学习各种先进而适用的教学方法,使之付诸于课堂效率上。然而,学生成绩依然不尽人意。主要是学生养成教育不好。班内学生有百分之八九十的人没有好的养成习惯。乱说脏话,随便打骂别人,随地乱扔垃圾,等等。坏的习惯影响了学生学习的心情,也导致没有优良的学习环境。班内学生大部分不知道主动学习,上课搞小动作,开小差,不认真听讲,早读不会马上进入学习状态,自制力很差。还有百分之十的学生是智商存在问题。对待学习的反应比起其他学生来比较慢,上课老师讲的知识觉得很难懂,难接受。对学习没有兴趣。家庭教育也存在严重问题。以上问题互相牵联,导致学生学习成绩不好,效果低廉。 3重点难点教学重点:多项式的乘法法则及其应用。 教学难点:探索多项式的乘法法则,灵活地进行整式的乘法运算。 关键:多项式的乘法应先转化为单项式与多项式相乘进行运算,进一步转化为单项式的乘法,紧紧扣住这一线索。 4教学过程 4.1 多项式乘以多项式 教学活动 活动1【活动】多项式乘以多项式教学方法:小组合作,自主学习 教学过程: 课前练习 师:前面我们学习了整式的乘法,快速做一做,看看你掌握的怎样? 计算:
生:交流答案 师:同学们看这道题怎样做? (多媒体展示)他和我们以前所学的有何不同? 生:现在是多项式乘多项式 师:那多项式乘多项式如何去计算呢?这节课我们一起来探究吧! 学习目标 师:1、探究并了解多项式与多项式相乘的法则 2、熟练的运用法则进行运算 三、探求新知 问题助学一: 动手做一做:利用如下的长方形卡片拼成更大的长方形(多媒体) [文本框: n] (学生活动)小组内展评作品,推选出最优秀的同学的作品给全班学生展示。 你能用不同的方法表示此长方形的面积吗? 生1:(m+n)(a+b) 生2:ma+mb+na+nb 生3:(m+n)a+(m+n)b (m+n)(a+b)=(m+n)a+(m+n)b=ma+mb+na+nb 问题助学二: 1、你能试着说说(m+b)(n+a)=m(n+a) + b(n+a) 怎么来的吗? 2、进一步完成m(n+a) + b(n+a) 的计算,并说说你的依据 引导学生把其中一个因式 看作一个整体,再利用乘法分配律来理解 与 相乘的结果,从而导出多项式与多项式相乘的法则。 四、诊断指导 归纳、小结多项式乘法法则 (1)文字叙述:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加 (2)用字母表示 法则的形成是本节课的重点之一。在学生归纳法则的过程中,结合学生讨论的情况,播放法则的形成动画,并在此过程中进行启发讲解,让学生明白两个“每一项”的含义。 五、点拨提升 第一关:(1)(1−x)(0.6−x) (2)(2x + y)(x−y) 设计意图:第一关,目的加强对公式的熟练运用,采用小组合作学习,即先自己动手做一做,再小组讨论兵教兵。最后一起交流小组学习的收获和应该注意的问题。随后在课本随堂练习中做了两道题来检测学生小组学习的情况。 第二关:(1)(a+3)·(b+5);(2)(3x-y)(2x+3y); 设计意图:第二关,题目的设置难度稍微加深,并设置了选做题(多媒体)。 第三关:(1)(3x-2)(2x-3)(x+2);(2)(a-b)(a+b)(a2+b2) 第三关,小组竞赛,题目难度有所提升,目的是检测小组整体合作学习水平,并提高学生小组合作的意识。通过结果评选出优胜小组,奖励相应的分数。 六、课堂小结 1、多项式乘法是用“换元”的方法,将多项式与多项式相乘转化为单项式与多项式相乘。 2、运用法则时,要有序地逐项相乘,做到不重不漏。 3、在含有多项式乘法的混合运算时,要注意运算顺序,计算结果要化简。 七、课堂小测 1、 2、 3、 4、 选作题:
八、板书设计 多项式乘多项式 (m+b)(n+a) = mn + ma + bn + ba 九、作业布置 必做题:随堂练习1 ; 选做题:配套练习册; 自留作业 通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是() A.(a-b)2=a2-2ab+b2 B.(a+b)2=a2+2ab+b2 C.2a(a+b)=2a2+2ab D.(a+b)(a-b)=a2-b2 答案:C 设计思想: 单项式的乘法用到了有理数的乘法、幂的运算性质,而后续的多项式与多项式的乘法,都要转化为单项式乘法.因此,单项式乘法将起到承前启后的作用,在整式乘法中占有独特地位.所以在教学中先对所学知识进行回顾,再从实际问题导入,让学生自己动手试一试,主动探索;在教学过程中引导学生参照引例解决方法,教师先不给出单项式与多项式相乘的运算法则,而是让学生先独立思考,然后由学生自己小结出如何进行单项式与多项式相乘的乘法,在探索新知的过程中让学生体会从特殊到一般,从具体到抽象的认识过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得单项式与单项式相乘的运算法则,从而构建新的知识体系.在此基础上要求学生用语言叙述这个性质,这有利于提高学生数学语言的表述能力.因为整式是在数的运算的基础上发展起来的,所以在学习单项式与多项式的乘法时,让学生类比数的运算律,将单项式乘以多项式转化为单项式的乘法,将新知识转化为已经学过的知识.无论是单项式乘以单项式还是单项式乘以多项式“转化”为单项式的乘法,学生都从中体会到学习新知识的方法,即学习一种新的知识、方法;通常的做法是把它归结为已知的数学知识、方法,从而使学习能够进行。 14.1 整式的乘法 课时设计 课堂实录14.1 整式的乘法 1多项式乘以多项式 教学活动 活动1【活动】多项式乘以多项式教学方法:小组合作,自主学习 教学过程: 课前练习 师:前面我们学习了整式的乘法,快速做一做,看看你掌握的怎样? 计算:
生:交流答案 师:同学们看这道题怎样做? (多媒体展示)他和我们以前所学的有何不同? 生:现在是多项式乘多项式 师:那多项式乘多项式如何去计算呢?这节课我们一起来探究吧! 学习目标 师:1、探究并了解多项式与多项式相乘的法则 2、熟练的运用法则进行运算 三、探求新知 问题助学一: 动手做一做:利用如下的长方形卡片拼成更大的长方形(多媒体) [文本框: n] (学生活动)小组内展评作品,推选出最优秀的同学的作品给全班学生展示。 你能用不同的方法表示此长方形的面积吗? 生1:(m+n)(a+b) 生2:ma+mb+na+nb 生3:(m+n)a+(m+n)b (m+n)(a+b)=(m+n)a+(m+n)b=ma+mb+na+nb 问题助学二: 1、你能试着说说(m+b)(n+a)=m(n+a) + b(n+a) 怎么来的吗? 2、进一步完成m(n+a) + b(n+a) 的计算,并说说你的依据 引导学生把其中一个因式 看作一个整体,再利用乘法分配律来理解 与 相乘的结果,从而导出多项式与多项式相乘的法则。 四、诊断指导 归纳、小结多项式乘法法则 (1)文字叙述:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加 (2)用字母表示 法则的形成是本节课的重点之一。在学生归纳法则的过程中,结合学生讨论的情况,播放法则的形成动画,并在此过程中进行启发讲解,让学生明白两个“每一项”的含义。 五、点拨提升 第一关:(1)(1−x)(0.6−x) (2)(2x + y)(x−y) 设计意图:第一关,目的加强对公式的熟练运用,采用小组合作学习,即先自己动手做一做,再小组讨论兵教兵。最后一起交流小组学习的收获和应该注意的问题。随后在课本随堂练习中做了两道题来检测学生小组学习的情况。 第二关:(1)(a+3)·(b+5);(2)(3x-y)(2x+3y); 设计意图:第二关,题目的设置难度稍微加深,并设置了选做题(多媒体)。 第三关:(1)(3x-2)(2x-3)(x+2);(2)(a-b)(a+b)(a2+b2) 第三关,小组竞赛,题目难度有所提升,目的是检测小组整体合作学习水平,并提高学生小组合作的意识。通过结果评选出优胜小组,奖励相应的分数。 六、课堂小结 1、多项式乘法是用“换元”的方法,将多项式与多项式相乘转化为单项式与多项式相乘。 2、运用法则时,要有序地逐项相乘,做到不重不漏。 3、在含有多项式乘法的混合运算时,要注意运算顺序,计算结果要化简。 七、课堂小测 1、 2、 3、 4、 选作题:
八、板书设计 多项式乘多项式 (m+b)(n+a) = mn + ma + bn + ba 九、作业布置 必做题:随堂练习1 ; 选做题:配套练习册; 自留作业 通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是() A.(a-b)2=a2-2ab+b2 B.(a+b)2=a2+2ab+b2 C.2a(a+b)=2a2+2ab D.(a+b)(a-b)=a2-b2 答案:C 设计思想: 单项式的乘法用到了有理数的乘法、幂的运算性质,而后续的多项式与多项式的乘法,都要转化为单项式乘法.因此,单项式乘法将起到承前启后的作用,在整式乘法中占有独特地位.所以在教学中先对所学知识进行回顾,再从实际问题导入,让学生自己动手试一试,主动探索;在教学过程中引导学生参照引例解决方法,教师先不给出单项式与多项式相乘的运算法则,而是让学生先独立思考,然后由学生自己小结出如何进行单项式与多项式相乘的乘法,在探索新知的过程中让学生体会从特殊到一般,从具体到抽象的认识过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得单项式与单项式相乘的运算法则,从而构建新的知识体系.在此基础上要求学生用语言叙述这个性质,这有利于提高学生数学语言的表述能力.因为整式是在数的运算的基础上发展起来的,所以在学习单项式与多项式的乘法时,让学生类比数的运算律,将单项式乘以多项式转化为单项式的乘法,将新知识转化为已经学过的知识.无论是单项式乘以单项式还是单项式乘以多项式“转化”为单项式的乘法,学生都从中体会到学习新知识的方法,即学习一种新的知识、方法;通常的做法是把它归结为已知的数学知识、方法,从而使学习能够进行。 正在加载,请稍后...Tags:14.1,整式,乘法,教学设计,课堂
![]() |
21世纪教育网,教育资讯交流平台