21世纪教育网,教育资讯交流平台

5.2 平行线及其判定课堂实录【2】

日期:2015-11-11 14:47 阅读:
王鹏  

地区: 甘肃省 - 武威市 - 凉州区

学校:凉州区五和乡九年制学校

1课时

5.2 平行线及其判定 初中数学       人教2011课标版

1教学目标

 1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念。

2.经历探究直线平行的判定方法的过程;掌握直线平行的判定方法,领悟归纳和转化的数学思想。

3.培养推理能力和有条理的表达能力。

2学情分析

学生能通过探究活动并讨论交流得出结论

3重点难点

教学重点:探索并掌握直线平行的判定方法。

教学难点:直线平行的判定方法的应用。

4教学过程 4.1 第一学时     教学活动 活动1【导入】探究平行线的判定方法

(二)探索新知

平行线的判定方法1

 问题1:如右图,在用直尺和三角板画平行线的过程中,三角板起着什么样的作用?

结论结果:三角板的作用是使∠PHF和∠BGF相等。

问题2:这两个角具有什么样的关系?我们是否得到一个判定两直线平行的方法?

讨论结果:平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单记为:同位角相等,两条直线平行。

用符号语言表达两直线平行的判定方法1:

如果∠1=∠2,那么AB∥CD.

问题3:木工用角尺画平行线的过程中,试说出用角尺画平行线的道理(课本14页图5.2—7)

平行线的判定方法2

问题4.在判定方法1的图中,如果∠PHF=∠HGA,那么AB∥CD,为什么?

分析:目前我们掌握了两种判定两直线平行的方法,但问题的条件都不符合,而根据问题情境,可以利用判定方法1同位角相等,两直线平行来解决问题,这就需要将问题中的内错角相等转化为同位角相等。

可以先放手让学生尝试独立解决,后小组交流

活动:因为∠PHF=∠HGA,而∠BGF=∠HGA(对顶角相等)

所以∠1=∠2,即同位角相等.

因此AB∥CD

讨论结果:归纳判定两条直线平行的判定方法2:

  两条直线被第三条直线所截,如果内错角等,那么这两条直线平行。

简单记为:内错角相等,两条直线平行.

用符号语言表达两直线平行的判定方法1:

如果∠PHF=∠HGA, 那么AB∥CD.

平行线的判定方法3

问题5.同旁内角在数量上满足什么关系时,两直线平行?

活动:如图 (1)学生根据图象先排除相等当∠4是钝角时,∠2是锐角才有可能使a∥b,进一步观察、猜想:如果同旁内角互补,两条直线平行,即如果∠2+∠4=180°,那么a∥b.

  (2)学生利用平行线的判定方法1或方法2来说明猜想的正确性.

教师根据学生说理,再准确板书:

因为∠2+∠4=180°,而∠4+∠1=180°,根据同角的补角相等,所以∠2=∠1,即同位角相等,从而a∥b.

讨论结果: 两条线的判定方法3

两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

简单记为:同旁内角互补,两条直线平行.

用符号语言表达:如果∠2+∠4=180°,那么a∥b.

5.2 平行线及其判定

课时设计 课堂实录

5.2 平行线及其判定

1第一学时     教学活动 活动1【导入】探究平行线的判定方法

(二)探索新知

平行线的判定方法1

 问题1:如右图,在用直尺和三角板画平行线的过程中,三角板起着什么样的作用?

结论结果:三角板的作用是使∠PHF和∠BGF相等。

问题2:这两个角具有什么样的关系?我们是否得到一个判定两直线平行的方法?

讨论结果:平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单记为:同位角相等,两条直线平行。

用符号语言表达两直线平行的判定方法1:

如果∠1=∠2,那么AB∥CD.

问题3:木工用角尺画平行线的过程中,试说出用角尺画平行线的道理(课本14页图5.2—7)

平行线的判定方法2

问题4.在判定方法1的图中,如果∠PHF=∠HGA,那么AB∥CD,为什么?

分析:目前我们掌握了两种判定两直线平行的方法,但问题的条件都不符合,而根据问题情境,可以利用判定方法1同位角相等,两直线平行来解决问题,这就需要将问题中的内错角相等转化为同位角相等。

可以先放手让学生尝试独立解决,后小组交流

活动:因为∠PHF=∠HGA,而∠BGF=∠HGA(对顶角相等)

所以∠1=∠2,即同位角相等.

因此AB∥CD

讨论结果:归纳判定两条直线平行的判定方法2:

  两条直线被第三条直线所截,如果内错角等,那么这两条直线平行。

简单记为:内错角相等,两条直线平行.

用符号语言表达两直线平行的判定方法1:

如果∠PHF=∠HGA, 那么AB∥CD.

平行线的判定方法3

问题5.同旁内角在数量上满足什么关系时,两直线平行?

活动:如图 (1)学生根据图象先排除相等当∠4是钝角时,∠2是锐角才有可能使a∥b,进一步观察、猜想:如果同旁内角互补,两条直线平行,即如果∠2+∠4=180°,那么a∥b.

  (2)学生利用平行线的判定方法1或方法2来说明猜想的正确性.

教师根据学生说理,再准确板书:

因为∠2+∠4=180°,而∠4+∠1=180°,根据同角的补角相等,所以∠2=∠1,即同位角相等,从而a∥b.

讨论结果: 两条线的判定方法3

两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

简单记为:同旁内角互补,两条直线平行.

用符号语言表达:如果∠2+∠4=180°,那么a∥b.

Tags:平行线,及其,判定,课堂,实录