21世纪教育网,面向全国的中小学学教师、家长交流平台

九年级上册数学(人教版)课后答案第22章·习题21.2答案

日期:2016-12-23 14:55 阅读:
很多学生询问:九年级上册数学(人教版)课后答案第22章·习题21.2答案有没课后答案?小编希望,大家要先独立完成作业,然后再来对照答案,祝你学习进步。
九年级上册数学(人教版)其余更多章节的课后答案,请点此查看>>>九年级上册数学(人教版)课后答案汇总<<<
下面是小编整理的:九年级上册数学(人教版)课后答案第22章·习题21.2答案详情如下:
1.解:(1)36x²-1=0,移项,得36x²=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x_1=1/6,x_2=-1/6. 
           (2)4x²=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x_1=9/2,x_2=-9/2.
           (3)(x+5)²=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x_1=0,x_2=-10.(4)x²+2x+1=4,原方程化为(x+1)^2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x_1=1,x_2=-3.

2.(1)9  3  (2)1/4    1/2   (3)1 1  (4)  1/25   1/5

3.解:(1)x²+10x+16=0,移项,得x²+10x=-16,配方,得x²+10x+5²=-16+5²,即(x+5)²=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x_1=-2,x_2=-8.
           (2)x²-x-3/4=0,移项,得x^2-x=3/4,配方,得x^2-x=3/4,配方,得x^2
-x+1/4=3/4+1/4,即(x-1/2)^2=1,开平方,得x- 1/2=±1,∴原方程的解为x_1=3/2,x_2=-1/2.
           (3)3x²+6x-5=0,二次项系数化为1,得x²+2x-5/3=0,移项,得x²+2x=5/3,配方,得x²+2x+1=5/3+1,即(x+1)²=8/3,开平方,得x+1=± 2/3 √6,∴x+1=2/3 √6或x+1=-2/3 √6,∴原方程的解为x_1=-1+2/3 √6,x_2=-1-2/3 √6.  (4)4x²-x-9=0,二次项系数化为1,得x²-1/4x-9/4=0,移项,得x²-1/4 x= 9/4,配方,得x²-1/4x+1/64=9/4+1/64,即(x-1/8)²=145/64,开平方,得x-1/8=±√145/8,∴x-1/8=√145/8 或x- 1/8=-√145/8,∴原方程的解为x_1=1/8+√145/8,x_2=1/8-√145/8.

4.解:(1)因为△=(-3)²-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根.
           (2)因为△=(-24)²-4×16×9=0,所以与原方程有两个相等的实数根.  
           (3)因为△=(-4√2)^2-4×1×9=-4<0,因为△=(-8)²-4×10=24>0,所以原方程有两个不相等的实数根.

5.解:(1)x²+x-12=0,∵a=1,b=1,c=-12,∴b²-4ac=1-4×1×(-12)=49>0,∴x= (-1±√49)/2=(-1±7)/2,∴原方程的根为x_1=-4,x_2=3.
           (2)x²-√2x-1/4=0,∵a=1,b=-√2,c=-1/4,∴b²-4ac=2-4×1×(-1/4)=3>0,∴x= (√2+√3)/2,∴原方程的根为x_1=(√2+√3)/2,x_2=(√2-√3)/2.
           (3)x²+4x+8=2x+11,原方程化为x²+2x-3=0,∵a=1,b=2,c=-3,
∴b²-4ac=2²-4×1×(-3)=16>0,∴x= (-2±√16)/(2×1)=(-2±4)/2,∴原方程的根为x_1=-3,x_2=1.
           (4)x(x-4)=2-8x,原方程化为x²+4x-2=0,∵a=1,b=4,c
=-2,∴b²-4ac=4²-4×1×(-2)=24>0,∴x= (-4±√24)/(2×1)=(-4±2√6)/2,原方程的根为x_1=-2+√6,x_2=-2√6.
           (5)x²+2x=0,∵a=1,b=2,c=0,∴b²-4ac=2²-4×1×0=4>0,∴x= (-2±√4)/(2×1)=(-2±2)/2,∴原方程的根为x_1=0,x_2=-2.  (6) x^2+2√5x+10=0,∵a=1,b=2√5,c=10,∴b^2-4ac=(2√5)²-4×1×10=-20<0,∴原方程无实数根.

6.解:(1)3x²-12x=-12,原方程可化为x²-4x+4=0,即(x-2)²=0,∴原方程的根为x_1=x_2=2.
           (2)4x^2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x_1=-6,x_2=6.
           (3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0,∴x-1=0或3x-2=0,
∴原方程的根为x_1=1,x_2=2/3.
           (4)(2x-1)²=(3-x)²,原方程可化为【(2x-1)+(3-x)】【(2x-1)-(3-x)】=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0,∴原方程的根为x_1=-2,x_2=4/3.

7.解:设原方程的两根分别为x_1,x_2.
       (1)原方程可化为x^2-3x-8=0,所以x_1+x_2=3,x_1∙x_2=-8.
       (2)x_1+x_2=-1/5,x_1∙x_2=-1.
       (3)原方程可化为x²-4x-6=0,所以x_1+x_2=4,x_1∙x_2=-6.
       (4)原方程可化为7x²-x-13=0,所以x_1+x_2=1/7,x_1∙x_2=-13/7.

8.解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,根据题意,得1/2 x(x+5)=7,所以x²+5x-14=0,解得x_1=-7,x_2=2,因为直角三角形的边长为√(x²+(x+5)^2 )=√(2²+7²)=√53 (cm).答:这个直角三角形斜边的长为√53cm.

9.解:设共有x家公司参加商品交易会,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x^2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x_1=10,x_2=-9,∵x必须是正整数,∴x=-9不符合题意。舍去,∴x=10.答:共有10家公司参加商品交易会.

10.解法1:(公式法)原方程可化为3x²-14x+16=0,∵a=3,b=-14,c=16,∴b²-4ac=(-14)²-4×3×16=4>0,∴x=(-(-14)±√4)/(2×3)=(14±2)/6,∴原方程的根为x_1=2,x_2=8/3.解法2:(因式分解法)原方程可化为【(x-3)+(5-2x)】【(x-3)-(5-2x)】=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x_1=2,x_2=8/3.

11.解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意的,得x(20/2-x)=24,整理,得x²-10x+24=0,解得x_1=4,x_2=6.当x=4时,20/2-x=10-4=6;当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24 m^2 的矩形.

12.解设这个凸多边形的边数为n,由题意可知1/2n(n-3)=20,解得n=8或n=-5,因为凸多边形的变数不能为负数,所以n=-5不合题意,舍去,所以n=8,所以这个凸多边形是八边形.假设存在有18条对角线的多边形,设其边数为x,由题意得1/2 x(x-3)=18,解得x=(3±√153)/2,因为x的值必须是正整数,所以这个方程不存在符合题意的解.故不存在有18条对角线的凸多边形.

13.解:无论p取何值,方程(x-3)(x-2)-p²=0总有两个不相等的实数根.理由如下:原方程可以化为x²-5x+6-p²=0,△=b²-4ac=(-5)^2-4×1×(6-p^2 )=25-24+4p²=1+4p².∵p²≥0,,1+4p²>0,∴△=1+4p²>0,∴无论P取何值,原方程总有两个不相等的实数根.
Tags:答案,九年级,上册,数学,人教