(解题好思路—扫码关注) 有学生向小编求助这个关于数学解直角三角形的一道题: 题目如下: 在 Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每 秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运 动,设运动时间为t秒(t≥0)。 (1)直接用含t的代数式分别表示:QB=______,PD=______; (2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度; (3)如图②,在整个运动过程中,求出线段PQ中点M所经过的路径长。 | | Tags:三角形,abc,等于,90度,数学 |