知识结构 重点、难点分析 相似三角形的性质及应用是本节的重点也是难点. 它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究相似三角形的性质,以完成对相似三角形的定义、判定和性质的全面研究.相似三角形的性质还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具. 它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大. 教法建议 1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等 2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答 3.在知识的巩固中要注意与全等三角形的对比 (第1课时) 一、教学目标 1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1. 2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理1的应用. 2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用. 四、课时安排 1课时 五、教具学具准备 投影仪、胶片、常用画图工具. 六、教学步骤 [复习提问] 1.三角形中三种主要线段是什么? 2.到目前为止,我们学习了相似三角形的哪些性质? 3.什么叫相似比? [讲解新课] 根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例. 下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1. 性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比 教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成. 分析示意图:结论→(欠缺条件)→(已知) BM=MC, 以上两种情况的证明可由学生完成. [小结] 本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法. 七、布置作业 教材P241中3、教材P247中A组3. 八.板书设计
Tags:相似三角形的性质及应用,教案 |
21世纪教育网,面向全国的中小学学教师、家长交流平台